跳到主要内容

R 语言 - 数据集

数据集(Data Set)是数据的集合,通常显示在表格中。

mtcars 数据集

在 R 中有一个流行的内置数据集,称为“mtcars”(Motor Trend Car Road Tests),它检索自 1974 年的 Motor Trend US Magazine。

在下面的示例中(以及下一章),我们将使用“mtcars”数据集,用于统计目的。

# Print the mtcars data set
mtcars

输出结果:

                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

你可以使用问号 (?) 获取有关 mtcars 数据集的相关信息。

# Use the question mark to get information about the data set

?mtcars

如下:

mtcars {datasets}	R Documentation
Motor Trend Car Road Tests
Description
The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973-74 models).

Usage
mtcars
Format
A data frame with 32 observations on 11 (numeric) variables.

[, 1] mpg Miles/(US) gallon
[, 2] cyl Number of cylinders
[, 3] disp Displacement (cu.in.)
[, 4] hp Gross horsepower
[, 5] drat Rear axle ratio
[, 6] wt Weight (1000 lbs)
[, 7] qsec 1/4 mile time
[, 8] vs Engine (0 = V-shaped, 1 = straight)
[, 9] am Transmission (0 = automatic, 1 = manual)
[,10] gear Number of forward gears
[,11] carb Number of carburetors
Note
Henderson and Velleman (1981) comment in a footnote to Table 1: 'Hocking [original transcriber]'s noncrucial coding of the Mazda's rotary engine as a straight six-cylinder engine and the Porsche's flat engine as a V engine, as well as the inclusion of the diesel Mercedes 240D, have been retained to enable direct comparisons to be made with previous analyses.'

Source
Henderson and Velleman (1981), Building multiple regression models interactively. Biometrics, 37, 391-411.

Examples
require(graphics)
pairs(mtcars, main = "mtcars data", gap = 1/4)
coplot(mpg ~ disp | as.factor(cyl), data = mtcars,
panel = panel.smooth, rows = 1)
## possibly more meaningful, e.g., for summary() or bivariate plots:
mtcars2 <- within(mtcars, {
vs <- factor(vs, labels = c("V", "S"))
am <- factor(am, labels = c("automatic", "manual"))
cyl <- ordered(cyl)
gear <- ordered(gear)
carb <- ordered(carb)
})
summary(mtcars2)

查看数据集信息

示例:使用 dim() 函数查找数据集的维度,使用 names() 函数查看变量的名称。

Data_Cars <- mtcars # create a variable of the mtcars data set for better organization

# Use dim() to find the dimension of the data set
dim(Data_Cars)

# Use names() to find the names of the variables from the data set
names(Data_Cars)

输出结果:

> dim(Data_Cars)
[1] 32 11
> names(Data_Cars)
[1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear"
[11] "carb"

示例:使用 rownames() 函数获取第一列每一行的名称,也就是每辆车的名称

Data_Cars <- mtcars

rownames(Data_Cars)

输出结果:

 [1] "Mazda RX4"           "Mazda RX4 Wag"       "Datsun 710"         
[4] "Hornet 4 Drive" "Hornet Sportabout" "Valiant"
[7] "Duster 360" "Merc 240D" "Merc 230"
[10] "Merc 280" "Merc 280C" "Merc 450SE"
[13] "Merc 450SL" "Merc 450SLC" "Cadillac Fleetwood"
[16] "Lincoln Continental" "Chrysler Imperial" "Fiat 128"
[19] "Honda Civic" "Toyota Corolla" "Toyota Corona"
[22] "Dodge Challenger" "AMC Javelin" "Camaro Z28"
[25] "Pontiac Firebird" "Fiat X1-9" "Porsche 914-2"
[28] "Lotus Europa" "Ford Pantera L" "Ferrari Dino"
[31] "Maserati Bora" "Volvo 142E"

从上面的示例中,我们发现数据集有 32 个观测值(Mazda RX4、Mazda RX4 Wag、Datsun 710 等)和 11 个变量(mpg、cyl、disp 等)。

变量被定义为可以测量或计算的事物。

以下是对 mtcars 数据集中变量的简要说明:

变量名描述
mpgMiles/(US) Gallon
cylNumber of cylinders
dispDisplacement
hpGross horsepower
dratRear axle ratio
wtWeight (1000 lbs)
qsec1/4 mile time
vsEngine (0 = V-shaped, 1 = straight)
amTransmission (0 = automatic, 1 = manual)
gearNumber of forward gears
carbNumber of carburetors

打印变量值

如果要打印属于某个变量的所有值,请使用 $ 符号和变量名称(例如 cyl(圆柱体))访问数据框。

示例:

Data_Cars <- mtcars

Data_Cars$cyl

输出结果:

 [1] 6 6 4 6 8 6 8 4 4 6 6 8 8 8 8 8 8 4 4 4 4 8 8 8 8 4 4 4 8 6 8 4

排序变量值

要对值进行排序,请使用 sort() 函数。

示例:

Data_Cars <- mtcars

sort(Data_Cars$cyl)

输出结果:

 [1] 4 4 4 4 4 4 4 4 4 4 4 6 6 6 6 6 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8

从上面的例子中,我们看到大多数汽车都有 4 缸和 8 缸。

分析数据

现在我们已经有了关于数据集的一些信息,我们可以开始用一些统计数字来分析它了。

例如,我们可以使用 summary() 函数来获取数据的统计摘要。

Data_Cars <- mtcars

summary(Data_Cars)

输出结果如下:

      mpg             cyl             disp             hp       
Min. :10.40 Min. :4.000 Min. : 71.1 Min. : 52.0
1st Qu.:15.43 1st Qu.:4.000 1st Qu.:120.8 1st Qu.: 96.5
Median :19.20 Median :6.000 Median :196.3 Median :123.0
Mean :20.09 Mean :6.188 Mean :230.7 Mean :146.7
3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0 3rd Qu.:180.0
Max. :33.90 Max. :8.000 Max. :472.0 Max. :335.0
drat wt qsec vs
Min. :2.760 Min. :1.513 Min. :14.50 Min. :0.0000
1st Qu.:3.080 1st Qu.:2.581 1st Qu.:16.89 1st Qu.:0.0000
Median :3.695 Median :3.325 Median :17.71 Median :0.0000
Mean :3.597 Mean :3.217 Mean :17.85 Mean :0.4375
3rd Qu.:3.920 3rd Qu.:3.610 3rd Qu.:18.90 3rd Qu.:1.0000
Max. :4.930 Max. :5.424 Max. :22.90 Max. :1.0000
am gear carb
Min. :0.0000 Min. :3.000 Min. :1.000
1st Qu.:0.0000 1st Qu.:3.000 1st Qu.:2.000
Median :0.0000 Median :4.000 Median :2.000
Mean :0.4062 Mean :3.688 Mean :2.812
3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
Max. :1.0000 Max. :5.000 Max. :8.000

如果你不理解输出数字,请不要担心,你很快就会掌握它们。

summary() 函数为每个变量返回六个统计数字:

  • Min(最小值)
  • First quantile (percentile)
  • Median(中位数)
  • Mean(平均数)
  • Third quantile (percentile)
  • Max(最大值)

我们将在接下来的章节中介绍所有这些,以及其他统计数字。