跳到主要内容

贝叶斯公式

贝叶斯定理(英语:Bayes' theorem)是概率论中的一个定理,描述在已知一些条件下,某事件的发生概率。

它的表达式如下:

P(AB)=P(A)P(BA)=P(B)P(AB)P(A∩B) = P(A)*P(B|A)=P(B)*P(A|B)

我们可以把贝叶斯公式理解为这是一种基于现有的可靠证据(比如一些观察、数据、信息),对所持信念(比如一些假设、主张或论点)的有效性进行计算的方法,简单来讲就是,原本的信念+新证据=改进后的新信念。

提示

托马斯·贝叶斯(Thomas Bayes)是18世纪的英国数学家,也是一位虔诚的牧师。据说他为了反驳对上帝的质疑而推导出贝叶斯定理。贝叶斯定理是一个由结果倒推原因的概率算法,在贝叶斯提出这个条件概率公式后,很长一段时间,大家并没有觉得它有什么作用,并一直受到主流统计学派的排斥。直到计算机诞生后,人们发现,贝叶斯定理可以广泛应用在数据分析、模式识别、统计决策,以及最火的人工智能中。结果,贝叶斯定理是如此有用,以至于不仅应用在计算机上,还广泛应用在经济学、心理学、博弈论等各种领域,可以说,掌握并应用贝叶斯定理,是每个人必备的技能。